High-resolution helical cone-beam micro-CT with theoretically-exact reconstruction from experimental data.

نویسندگان

  • T Varslot
  • A Kingston
  • G Myers
  • A Sheppard
چکیده

PURPOSE In this paper we show that optimization-based autofocus may be used to overcome the instabilities that have, until now, made high-resolution theoretically-exact tomographic reconstruction impractical. To our knowledge, this represents the first successful use of theoretically-exact reconstruction in helical micro computed tomography (micro-CT) imaging. We show that autofocus-corrected, theoretically-exact helical CT is a viable option for high-resolution micro-CT imaging at high cone-angles (∼50°). The elevated cone-angle enables better utilization of the available X-ray flux and therefore shorter image acquisition time than conventional micro-CT systems. METHODS By using the theoretically-exact Katsevich 1PI inversion formula, we are not restricted to a low-cone-angle regime; we can in theory obtain artefact-free reconstructions from projection data acquired at arbitrary high cone-angles. However, this reconstruction method is sensitive to misalignments in the tomographic data, which result in geometric distortion and streaking artefacts. We use a parametric model to quantify the deviation between the actual acquisition trajectory and an ideal helix, and use an autofocus method to estimate the relevant parameters. We define optimal units for each parameter, and use these to ensure consistent alignment accuracy across different cone-angles and different magnification factors. The tomographic image is obtained from a set of virtual projections in which software correction for hardware misalignment has been applied. RESULTS We make significant modifications to the autofocus method that allow this method to be used in helical micro-CT reconstruction, and show that these developments enable theoretically-exact reconstruction from experimental data using the Katsevich 1PI (K1PI) inversion formula. We further demonstrate how autofocus-corrected, theoretically-exact helical CT reduces the image acquisition time by an order of magnitude compared to conventional circular scan micro-CT. CONCLUSIONS Autofocus-corrected, theoretically-exact cone-beam reconstruction is a viable option for reducing acquisition time in high-resolution micro-CT imaging. It also opens up the possibility of efficiently imaging long objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact helical reconstruction using native cone-beam geometries.

This paper is about helical cone-beam reconstruction using the exact filtered backprojection formula recently suggested by Katsevich (2002a Phys. Med. Biol. 47 2583-97). We investigate how to efficiently and accurately implement Katsevich's formula for direct reconstruction from helical cone-beam data measured in two native geometries. The first geometry is the curved detector geometry of third...

متن کامل

Development of Computed Tomography Algorithms

Over the past several years, computed tomography (CT) methods have advanced significantly, yielding novel analytic and iterative solutions applicable to medical CT and micro-CT. The resulting algorithms promise to improve spatial , contrast, or temporal resolution as well as to suppress artifacts and reduce radiation dose. Significant attention has been devoted to optimizing computational perfo...

متن کامل

3D Image Reconstruction from Truncated Helical Cone Beam Projection Data - A Linear Prediction Approach

With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence ca...

متن کامل

PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.

Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could aris...

متن کامل

Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 38 10  شماره 

صفحات  -

تاریخ انتشار 2011